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About Myself

✓ I am graduate student at Cukurova 
University, in Turkey.

✓ I have been at LPC for 2 years and my Ph.D. 
thesis research has been being done at LPC.

‣ Search for new physics with jets with Dr. 
Robert M. Harris

‣ HCAL with Dr. Shuichi Kunori

✓ I plan to graduate in December. 
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Search for Dijet Resonance 

A MC based analysis was done for 10 TeV collisions 
and a CMS reviewed paper (PAS QCD 2009-006) and 
an analysis note (CMS AN-2009/070) were written

The results based on 120 nb-1 (PAS EXO 
2010-001) were approved for ICHEP 2010

The results based on 836 nb-1 data (PAS EXO 
2010-010) were approved for HCP 2010

The results based on 2.88 pb-1 data will be 
submitted to PRL (hopefully this Friday) and it will 
cover my Ph.D. thesis.

My talk will be based on the latest data.
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Dijet in Standard Model
• What is a Dijet?

✓ Dijet results from simple 2→2 
scattering of “partons”

✓ Dijets are events which primarily 
consist of two jets in the final 
state.

• We search for the new particles in 
“Dijet Mass” spectrum

✓ If a resonance exist, It can show up 
as a bump in Dijet Mass spectrum

• Dijet Mass from final state

Dijets in Standard Model
• What is a dijet?

• Parton Level

✓ Dijet results from simple 2→2 scattering of 
“partons”

✓ quarks, anti-quarks and gluons

• Particles Level

✓ Partons come from colliding protons

✓ The final state partons become jets of observable 
particles via the following chain of events

‣ The partons radiate gluons.

‣ Gluons splits into quarks and antiquarks

‣ All colored object “hadronize” into color 
neutral particles

‣ Jet made of π, k, p, n, etc

• Dijets are events which primarily consist of two jets 
in the final state.

Jet

Jet

Particle Level

6

m =
�

(E1 + E2)2 − (�p1 + �p2)2

4

61

D Event Displays and Table of High Mass Dijet Events725

Figure 38: Lego (left) and ρ− φ (right) displays of the 1st to 3rd Highest Masss Dijet Events
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Resonance Models

• The models which are considered in this analysis 
are listed.

✓ Produced in “s-channel”

✓ Parton-Parton Resonances

‣ Observed as dijet resonances.

• Search for model with narrow width Γ.
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Dijet Resonances

! New particles that decay to dijets
" Produced in “s-channel” 
" Parton - Parton Resonances

# Observed as dijet resonances.

" Many models have small width !
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1.3 Summary of Experimental Technique 3

Sundrum gravitons [10], with coupling k/MPL = 0.1, from a model of large extra dimensions65

are produced from gluons or quark-antiquark pairs in the initial state (qq̄, gg → G). Heavy W66

bosons [11] inspired by left-right symmetric grand unified models have electroweak couplings67

and require antiquarks for their production(q1q̄2 → W �), giving small cross sections. Heavy68

Z bosons [11] inspired by grand-unified models are widely anticipated by theorists, but they69

are electroweakly produced, and require an antiquark in the initial state(qq̄ → Z�), so their70

production cross section is around the lowest of the models considered. The model with the71

largest cross section is a recent model of string resonances, Regge excitations of the quarks and72

gluons in open string theory, which includes resonances in all parton-parton channels (qq̄, qq,73

gg and qg) with multiple spin states and quantum numbers [12, 13]. Table 1 summarizes some74

properties of these models.75

Model Name X Color JP Γ/(2M) Chan
Excited Quark q* Triplet 1/2+ 0.02 qg

E6 Diquark D Triplet 0+ 0.004 qq
Axigluon A Octet 1+ 0.05 qq̄
Coloron C Octet 1− 0.05 qq̄

RS Graviton G Singlet 2+ 0.01 qq̄ , gg
Heavy W W’ Singlet 1− 0.01 qq̄
Heavy Z Z’ Singlet 1− 0.01 qq̄

String S mixed mixed 0.003− 0.037 qq̄, qq, gg and qg
Table 1: Properties of Some Resonance Models

Published lower limits [14] on the mass of these models in the dijet channel are listed in table 2.76

q∗ A or C D ρT8 W � Z� G S
0.87 1.25 0.63 1.1 0.84 0.74 - -

Table 2: Published lower limits in dijet channel in TeV on the mass of new particles considered
in this analysis. These 95% confidence level exclusions are from the Tevatron [14].

77

1.3 Summary of Experimental Technique78

Our experimental technique starts with a measurement of the inclusive process pp → jet + jet +79

anything. Inclusive means we measure processes containing at least two jets in the final state,80

but the events are allowed to contain additional jets, or anything else. The dijet in the event81

is simply the two highest pt jets, the leading jets. Within the standard model our dataset is82

expected to be overwhelming dominated by the 2 → 2 process of hard parton scatters, with83

additional radiation off the initial and final state partons naturally giving additional jets. We84

do not cut away events that contain this radiation, which would reduce signals that also have85

similar amounts of radiation, and un-necessarily restrict signals to a narrow topology. The86

events can also contain additional particles, such as leptons or photons, but this will occur very87

rarely in the standard model. Finally, even more rarely within the standard model, the two88

leading CaloJets in the event can result from electrons, photons or taus producing energy in the89

calorimeter, and we do not exclude these insignificant contributions to our sample either. Our90

dijet selection is then open to many signals of new physics including high pt jets, leptons and91

photons. However, our selection is optimized for signals in the 2 → 2 parton scattering process,92

and is overwhelmingly dominated by the signal background of dijets from QCD within the93

standard model.94
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Experimental Technique

• Measurement of dijet mass spectrum

• Comparison to PYTHIA QCD Monte Carlo 
prediction

• Fit of the measured dijet mass spectrum with a 
smooth function and search for resonance signal 
(bump)

• If no evidence, calculate cross section upper limit 
and compare with model cross section.
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Data Sample
• Dataset

✓ (135059-135735) - /MinimumBias/Commissioning10-SD_JetMETTau-
Jun14thSkim_v1/RECO

✓ (136066-137028) - /JetMETTau/Run2010A-Jun14thReReco_v2/RECO

✓ (137437-139558) - /JetMETTau/Run2010A-PromptReco-v4/RECO

✓ (139779-140159) - /JetMETTau/Run2010A-Jul16thReReco-v1/RECO

✓ (140160-141899) - /JetMETTau/Run2010A-PromptReco-v4/RECO

✓ (141900-142664) - /JetMET/Run2010A-PromptReco-v4/RECO

• /QCDDijet_PtXXtoYY/Spring10-START3X_V26_S09-v1/GEN-SIM-
RECO

• Official JSON Files

• Estimated Integrated Luminosity: 2.875 pb-1 (with 11% uncertanity)
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Event Selection

8

• Trigger 

✓ Technical Bit TT0 (for beam crossing)

✓ HLT_Jet50U (un-prescaled)

• Event Selection

✓ Good primary vertex 

✓ At least two reconstructed jets

‣ AK7caloJets 

‣ JEC: L2+L3, "Summer10" + Residual Data-Driven

✓ Require both |Jet η|< 2.5 and |Δη|<1.3

‣ Suppress QCD process significantly.

✓ Require both leading jets passing the "loose" jet id & Mjj > 220 GeV 
(corrected)

5. MEASUREMENT OF DIJET MASS SPECTRUM Sertac Ozturk
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Figure 5.2 HLT Jet50U trigger efficiency as a function of dijet mass (left) and as a function of

corrected pT of leading jet is measured in data.

5.1.2 Data Quality

The number of events in the analysis after the basic cuts are shown for each cut in

Table 5.1.

Events after pre-selection cut 6126910 100%

Events after vertex cut 6125930 99.98%

Events after dijet eta cuts 2088922 34.09%

Events after dijet mass cut 414645 6.78%

Events after jet id cut 414131 6.76%

Table 5.1 Cuts and Events

Only 514 events which are mostly HPD noise are rejected by JetID cut and the fraction

of events removed by JetID cut is very small. Because the reqirement kinematic cuts

(|η| < 2.5 and |∆η| < 1.3) and dijet mass cut (M j j > 220 GeV) gives higher the jet purity.

The distributions of the loose JetID variable are shown in Fig.5.3. Electromagnetic

fraction of jet energy, Jet EMF, doesn’t habe a peak near zero or one which indicate a

problem from ECAL and HCAL, such as hot channel. The fraction of jet energy in the

27

Events Fraction



Sertac Ozturk

Trigger Efficiency
• Start analysis of Dijet Mass distribution at 220 GeV.

✓ 220 GeV chosen for full trigger efficiency 

9
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Dijet Data Quality

10
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Dijet Data Stability

• Average dijet mass 
and average pt of 
two leading jets 
for each runs are 
shown.

• There is a good 
stability.
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Dijet Mass and QCD

12

• The data is in good agreement with the full CMS simulation of 
QCD from PYTHIA.
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Dijet Mass and Fit
• We fit the data to a function containing 4 parameters used by 

CDF Run 11

13

Pulls
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5. Measurament of Dijet Mass Spectrum Sertac Ozturk

QCD MC prediction is in good agreement with the data.
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Figure 5.11 The dijet mass spectrum data (points) divided by the QCD PYTHIA prediction.

The band shows the sensitivity to a 10% systematic uncertainty on the jet energy scale.

The data points and corresponding uncertainty are listed in Table 5.X.

5.2.1 Dijet Mass Spectrum and Fit

Dijet mass spectrum is compared to a fit in Fig.5.X. The parametrization of smooth fit

function is

dσ
dm

= p0
(1−X)p1

X p2+p3 ln(X) (5.2)

where x = m j j/
√

s and p0,1,2,3 are free parameters. The (1−X) term is motivated by

the parton distribution fall of with fractional momentum. The X−p3 ln(x) factor describes

34

5. Measurament of Dijet Mass Spectrum Sertac Ozturk

QCD MC prediction is in good agreement with the data.
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Figure 5.11 The dijet mass spectrum data (points) divided by the QCD PYTHIA prediction.

The band shows the sensitivity to a 10% systematic uncertainty on the jet energy scale.

The data points and corresponding uncertainty are listed in Table 5.X.

5.2.1 Dijet Mass Spectrum and Fit

Dijet mass spectrum is compared to a fit in Fig.5.X. The parametrization of smooth fit

function is

dσ
dm

= p0
(1−X)p1

X p2+p3 ln(X) (5.2)

where x = m j j/
√

s and p0,1,2,3 are free parameters. The (1−X) term is motivated by

the parton distribution fall of with fractional momentum. The X−p3 ln(x) factor describes

34
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Another Fit Parametrization

• In addition to the default fit, 2 
alternate functional forms are 
considered.

• Default 4 parameters fit gives 
best result.
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in the denominator, motivated by the QCD matrix element. It also has a term in the numerator373

motivated by the parton distribution fall off with fractional momentum (1− m/
√

s)P1 (where374 √
s = 7000 GeV is the center-of-mass energy). This three parameter function was used by CDF375

in run IA. We find that the default fit gives a good χ2/DF of 17.1/18 (probability 52%), and this376

is the best fit we can find of our data.377

We have also explored three alternate parameterizations. All parameterizations have a power378

law in them, because without a power law we cannot get a good fit with only 2, 3 or 4 pa-379

rameters. A 2-parameter fit with just a power law and a constant, p0/mp1 , gives a reasonable380

fit χ2/DF = 19.3/19 (probabilty 44%), but we have been advised to only consider parame-381

terizations with the same number of parameters as our default fit or greater, in order to have382

reasonable flexibility in the fit parameterization. The 2-parameter fit has only one shape pa-383

rameter. Alternate fit A is a 3-parameter fit with a modified power law, obtained by simply384

adding an offset to the mass, and we get a good fit with χ2/DF = 17.9/18 (probability 46%).385

Alternate fit B is a 4-parameter fit very much like our default fit, but we have added a term386

quadratic in m/
√

s to the term in the numberator to give the fit a little more flexibility to de-387

scribe data at high mass tails. This 4 parameter function was used by CDF in run IB [16]. We388

find that this function gives a good fit to our data, with χ2/DF of 16.8/17 (probability 47%).389

Alternate fit C is another 4 parameter function which again has our characteristic numerator390

and denominator but includes another term in the power of the power law, again just to give391

the fit more flexibiliity. This 4 parameter function was used by CDF in run II [14]. Again we392

find this function ives a good fit to our data, with χ2/DF of 16.8/17 (probability 47%).393

Figure 18 shows the fractional differences between data and the fit function, (data-fit)/fit, and394

the pulls, (data-fit)/error, for all four fits.395

Notice from both Fig. 17 and 18 that the largest difference from the default 3-parameter fit396

occurs when using the alternate fit A with 3 parameters. We will use this alternate 3-parameter397

function from fit A to find our systematic uncertainty on the background due to the fit parame-398

terization. Notice that there is very little difference between the default 3-parameter fit and the399

alternate 4-parameter fits which were introduced to give the 3-parameter fit more flexibility.400

From this we conclude that no more flexibility is needed to fit this data, and we have found the401

best possible smooth fit with a few parameters. When using these parameterizations to find402

systematic uncertainties on the background we do not find as large a systematic as with the403

alternate 3-parameter function.404
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Resonance Shapes
• We have simulated dijet resonances using CMS simulation + 

PYTHIA.

• qq, qg and gg resonances have different shape mainly due to 
FSR. 

✓ The width of dijet resonance increases with number of 
gluons because gluons emit more radiation than quarks.

• We search for these three basic types of narrow dijet 
resonance in our data.
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Fit and Signal
• We search for dijet resonance signal in our data.

• Excited quark signals are shown at 0.5 TeV and 1.5 TeV.

• String resonance is shown at 1 TeV and 2 TeV.
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The Largest Fluctuation in Data

• Upward fluctuations 
around 600 GeV and 
900 GeV

• Best fit resonance is at 
622 GeV with local 
significance 1.86 sigma 
from log likelihood 
ratio.

• There is no evidence 
for dijet resonance.
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Setting Limits
• For setting upper limit on the resonance production cross 

section,  a Bayesian formalism with a uniform prior is used.

L =
�

i

µni
i e−µi

ni!
µi = αNi(S) + Ni(B).

• The signal comes from our dijet resonance shapes.

• The background comes from Background+Signal fit.

Measured # of events 
in data

# of event from 
signal

Expected # of event 
from background
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Early Limits with Stat. Error Only

19

• 95% CL Upper limit with Stat. Error. Only compared to cross section for various model.

✓ Show quark-quark and quark-gluon and gluon-gluon resonances separately. 

✓ gluon-gluon resonance has the lowest response and is the widest and gives worst 
limit. 
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Systematics

• We found the uncertainty in dijet 
resonance cross section from following 
sources.

✓ Jet Energy Scale (JES)

✓ Jet Energy Resolution (JER)

✓ Choice of Background Parametrization

✓ Luminosity

20
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Jet Energy Scale (JES)
• JetMET guidance is 10% uncertainty in jet energy scale.

✓ Shifting the resonance 10% lower in dijet mass gives more QCD background

✓ Increases the limit between 14% and 42% depending on resonance mass and 
type.
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Jet Energy Resolution (JER)
• JetMET guidance is 10% uncertainty in jet energy resolution.

• We smear our resonance shapes with a gaussian designed to increase the core width 
by 10%. 

✓ σGaus = √{(1.1)2-1} σRes  

• This increases our limit between 7% and 22% depending on resonance mass and type.
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Background Parametrization Systematics

• We have varied the choice of background parametrization

• We use the 4 parameter fit as a systematic on our background shape.

• This increases our limit between 8% and 19% depending on 
resonance mass and type. 
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Total Systematic Uncertainties
• We add all mentioned systematic uncertainties in quadrature, also 11% for 

luminosity.

• JEC is dominant systematic uncertainty.

• Total systematic uncertainty varies from 24% to 48% depending on 
resonance mass and type.
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Incorporating Systematic
• We convolute posterior PDF with Gaussian systematics 

uncertainties.

✓ Posterior PDF including systematics is broader and gives 
higher upper limit.
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30 4 Systematic Uncertainties

4.3 Background Parameterization398

We considered two others functional forms with 2 and 4 parameters to parametrize the QCD399

background as discussed in section 2.6.1 and shown in Equation 3. Fig. 25 show comparison400

of fits with the data points. We find that the 2 parameter form, which is a marginal fit to our401

data, gives the largest fractional change over the vast majority of resonance masses, and we402

conservatively use it for our background parametrization systematic at this time.403
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Figure 25: Left) The data and the default 3 parameter fit and the 2 and 4 parameter fits use to
evaluate the systematics. Right) Fractional absolute change in the limit when using th 2 and 4
parameter fits for the background.

4.4 Total Uncertainty404

We determine 1σ change for each systematic uncertainty in signal that we can discovery or405

exclude. In addition to the sources already mentioned, we include an uncertainty of 10% on406

the integrated luminosity.407

To find total total systematics, we add the these 1σ changes as quadrature. The individual and408

total systematic uncertainties as a function of resonance mass are illustrated in Fig. 26. Absolute409

uncertainty in each resonance mass is calculated as total systematics uncertainty multiply by410

upper cross section limit.411

4.5 Incorporating Systematics in the Limit412

We convolute the posterior probability density with a Gaussian for each resonance mass. The413

equation of convolution is414

L(σ) =
� ∞

0
L(σ�)G(σ, σ�)dσ� (7)

Where L(σ�) is the posterior probability density at signal cross section σ�, and G(σ, σ�) is the415

Gaussian probability from systematics to observe σ if σ� is expected. The width of the Gaussian416

is taken as the absolute uncertainty in each resonance mass, equal to the fractional uncertainty417

times the limit on the cross section. This procedure, identical to what was done at CDF, con-418

servatively assigns the same width to the Gaussian in units of pb at each point in the posterior419

G: Gaussian distribution with
RMS width equal to systematic 

uncertainty in cross section
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Effect of Systematics on Limit
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• 95% CL Upper limit with Stat. Error. Only and Including Sys. Uncertainties are shown 
separately.

• The mass limits are reduced by 0.1 TeV for both string resonance and excited quark.
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Results
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• We excluded the mass limits as following: 

• String

✓ 0.50<M(S)<2.50 TeV

‣ M(S)<1.40 from CDF

• Excited Quark

✓ 0.50<M(q*)<1.58 TeV 

‣ 0.40<M(q*)<1.26 from ATLAS 

• Axigluon/Coloron

✓ 0.50<M(A)<1.17 TeV & 1.47<M(A)<1.52 TeV

‣ 0.12<M(A)<1.25 TeV from CDF

• E6 Diquark

✓ 0.50<M(D)<0.58 TeV & 0.97<M(D)<1.08 TeV 
& 1.45<M(D)<1.60 TeV

‣ 0.29<M(D)<0.63 TeV from CDF
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Expected Limit
• Due to downward fluctuation around 1.2 TeV, measured limit 

is 250 GeV grater than expected limit for excited quark.

• Due to upward fluctuation around 600 GeV, we lost 
sensitivity to a E6 diquark at low resonance mass.
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Conclusion
• We have a dijet mass spectrum that extends to 

2 TeV GeV with ~2.9 pb-1 data.

• The dijet mass data is in good agreement with 
a full CMS simulation of QCD from PYTHIA.

• There is no evidence for dijet resonances

• We extended excluded mass limit for dijet 
resonance models beyond Tevatron and ATLAS.

• First CMS research paper based on these 
result will be submitted to PRL in this week.
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Back-up
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Beam Splash 2009

• I spent some effort to determine HF 
calibration constant in 2009 Beam splash data.
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Estimation of IFB Signal
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6/21/10 Latife Vergili,              
Shuichi Kunori 

HPD Ion feedback & pulse shape 
(ROC PFG Report) 
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TS later.
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PFG task N.9 - 
Investigations on HBP14/4 operating at 40V 
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• Compare Pulse Shape in 80 BV, 40 BV and 30 BV

• HBP14_RM4

✓ iphi:54, depth:1, zside>0 and ieta:1,2,3, ..., 16

HBHE uses 4 TS for reconstruction.
Containment becomes worse as we lower the BV.
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Jet Commissioning with First Data

• I looked at JetID cuts criteria in 2009 MinimumBias Collision 
Data. (CMS AN-2010/030 & PAS JME 10-001)
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4 Survival fraction for loose jet ID selection criteria in dijet events
Events having dijet topology are greatly enriched in real jets. For this reason, the same cuts on jet variables pass
a much higher fraction of reconstructed hadronic jets in these events than they do in the super-sample of inclusive
jets. Here we present the fractional survival fractions for the two leading jets in data and in Monte Carlo.

Within this sample set, we define a dijet topology as one in which the two jets leading in transverse momentum
meet a loose cut of being back-to-back in azimuth to within 1 radian. This is done to extract the set of events most
likely to contain the parton- parton scattering events. Some such di-jet events include more than two jets, but they
are ignored in this section to focus on the di-jet itself.

For the leading two jets comprising a dijet the following four figures show the fractional survival fractions as a
function of corrected jet pT to pass cuts of Fig. 13 n90hits > 1, Fig. 14 EMF > 0.01, and Fig. 15 fHPD < 0.98,
separately.

The same survival fraction measure for all cuts simultaneously is given in Fig. 16.

In all four cases:

Left: For the numerator we count the number of jets for which both jets in the dijet event pass the cut, and for the
the denominator we count the number of jets in all dijets before cuts.

Right: For the numerator we count the number of jets which pass the cut, and for the denominator we count the
number of jets in all dijets before cuts.
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Figure 13: Dijet N90Hits> 1 cut survival fraction as a function of corrected jet pT . Left: The cut is required for
both leading jets. Right: The cut is required jet-by-jet for the two leading jets..

Comparing the survival fractions for jets comprising dijets to those of inclusive jets we see that in the dijet case,
survival fractions are much improved across the whole pT range for which statistics are available.
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Figure 14: Dijet Minimal EMF cut survival fraction as a function of corrected jet pT . Left: The cut is required for
both leading jets. Right: The cut is required jet-by-jet for the two leading jets.
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Figure 15: Dijet fHPD cut survival fraction as a function of corrected jet pT . Left: The cut is required for both
leading jets. Right: The cut is required jet-by-jet for the two leading jets.
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Figure 14: Dijet Minimal EMF cut survival fraction as a function of corrected jet pT . Left: The cut is required for
both leading jets. Right: The cut is required jet-by-jet for the two leading jets.
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Figure 15: Dijet fHPD cut survival fraction as a function of corrected jet pT . Left: The cut is required for both
leading jets. Right: The cut is required jet-by-jet for the two leading jets.
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Figure 16: The loose cut survival fraction as a function of corrected jet pT . Left: The cut is required for both
leading jets. Right: The cut is required jet-by-jet for the two leading jets.
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Figure 17: The pT spectrum among jets comprising dijets where the loose cut is required Left: on both jets together
and Right: on each jet independently.
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